Mather, W.B. and A.K. Pope. University of Queensland, St. Lucia, Australia. Inversions from Chiang Mai, Thailand. 5th Report.

Table 1.

Inver- sion	Chromo- some	Simple	Complex	Het. Freq.%	Break- points
A ₅	II L	Х		44.7	
D ₅ E	II L		X	2.6	
E	II L	Х		13.2	
C ₇	II L		Х	2.6	3.2-21.2
C ₅	II R	Χ		10.5	
С ₅ Ү ₆	III	Χ		2.6	
B ₅	III	Χ		13.2	
B ₅ F ₃	III	Х		2.6	

In July 1984 thirty-eight isolines of **D.s.albostrigata** and seven isolines of **D.albomicans** were established from Chiang Mai, Thailand. Inversions in these species were last reported on from Chiang Mai in November 1983 (Mather & Tam, DIS 61: this issue).

- (a) **D.s.albostrigata.** Six simple and two complex inversion were detected. All inversions had previously been detected in Southeast Asia, but F₃ was new to Chiang Mai. A photograph of the new inversion C₇ is presented and breakpoints assigned in relation to the standard photographic map (Thongmeearkom 1977, DIS 52:154). The heterozygosity frequency of all inversions is given in Table 1.
- (b). **D.albomicans.** Five simple and one complex inversions were detected (Table 2). All had previously been detected in Southeast Asia but L₃ was new to Chiang Mai.

The material was collected and the isolines established by W.B.M. The laboratory work was carried out by A.K.P.

Table 2. Inver- Chromo- Simple Complex sion some Ι χ R_5 E1 χ II L II L A₇ Х III Х c_1 III χ E₆

Figure 1. The free end of the chromosome is in the centre of the photograph.

III

Mather, W.B. and A.K. Pope. University of Queensland, St. Lucia, Australia. Inversions from Phuket, Thailand. 6th Report.

In January 1984 thirty isolines of **D.s.albostrigata**, twelve isolines of **D.albomicans** and two isolines of **D.kohkoa** were established from Phuket, Thailand. Inversions in **nasuta** group species were last reported on from Phuket in July 1983 (Mather & Casu, DIS 61: this issue).

 L_3

(a) **D.s.albostrigata.** Eight simple and one complex inversion were detected (Table 1). All inversions had previously been detected from Phuket. The heterozygosity frequency of all inversions detected is given in the Table.

Table 1.

Inversion	Chromosome	Simple	Complex	Het.Freq.%
Δr	II L	Х		16.7
А _Б D _Б	, II L	,	Х	46.7
I ₂	II L	Х		3.3
Ε̈́	II L	X		33.3
C ₅	II R	X		73.3
С ₅ С ₁	III	X		46.7
W ₂	III	Х		13.3
F_3	III	X		13.3
P ₅	III	Х		6.7

Table 2.

Inversion	Chromosome	Simple	Complex	Het.Freq.%
R ₅	I	Х		25.0
E1	II L	Х		66.7
c_1	III	Х		58.3
L ₃	III	Χ		16.7
E ₆	III		X	66.7
B ₆	III	X		33.3
Z _S	III	Х		16.7
B1	III	χ		8.3

Table 3.

Inver- sion	Chromo- some	Break- points
£1	II L	
Υ	III	
К ₆ L	III	
L	III	
B ₇	III	13.2-19.3

Figure 1. The free end of the chromosome is to the right.

- (b) D-albomicans. Seven simple and one complex inversion were detected (Table 2). All inversions had previously been detected from Southeast Asia, but R_5 and Z_6 were new to Phuket.
- (c) D.kohkoa. Five simple inversions were detected (Table 3). Four of the five inversions had previously been detected in Southeast Asia, but of these E¹, K₆, and L are new to Phuket. A photograph of the new inversion B₇ is presented and breakpoints assigned in relation to the standard photographic map (Mather, W.B. & P. Thongmeearkom 1978, DIS 53:150).

The material was collected and the isolines established by W.B.M. The laboratory work was carried out by A.K.P.

Mather, W.B. and A.K. Pope. University of Queensland, St. Lucia, Australia. Inversions from Phuket, Thailand. 7th Report.

In July 1984 twenty-eight isolines of **D.s.albostrigata** and ten isolines of **D.albomicans** were established from Phuket, Thailand. Inversions in these species were last reported on from Phuket in January 1984 (Mather & Pope, DIS 61: this issue).

- (a) **D.s.albostrigata.** Seven simple and one complex inversion were detected (Table 1). All inversions had previously been detected from Phuket. The heterozygosity frequency of all inversions detected is given in Table 1.
- (b) **D.albomicans.** Five simple and one complex inversions were detected (Table 2). All inversions had previously been detected from Phuket. The heterozygosity frequency of all inversions detected is given in Table 2.

The material was collected and the isoline established by W.B.M. The laboratory work was carried out by A.K.P.

Table 1.

Inversion	Chromosome	Simple	Complex Property of the Complex Comple	Het.Freq.%
A ₅	II L	Х		7.1
E	II L	χ		14.2
D_5	II L		Χ	67.8
C ₅	II R	Χ		64.2
D ₅ C ₅ C ₁	III	Χ		42.8
P_5^{-}	III	Χ		3.5
W2	III	Χ		28.5
F ₃	III	Х		10.7

Table 2.

Inversion	Chromosome	Simple	Complex	Het.Freq.%
R ₅	I	Х		10
R ₅ EÎ	II L	Х		50
\mathfrak{c}_1	III	Х		90
с ₁ Е ₆ L ₃ В ₆	III		Χ	50
L ₃	III	Х		50
B ₆	IIi	Х		20